Part Number Hot Search : 
2SC43 CS842 ATMEL 5XS18D7 VUS11 P4SMA47A BB609 MBR1070
Product Description
Full Text Search
 

To Download MB89646PFM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 FUJITSU SEMICONDUCTOR DATA SHEET
DS07-12505-3E
8-bit Proprietary Microcontroller
CMOS
F2MC-8L MB89640 Series
MB89643/645/646/647/P647/PV640
s DESCRIPTION
The MB89640 series has been developed as a general-purpose version of the F2MC*-8L family consisting of proprietary 8-bit, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as dual-clock control system, five operating speed control stages, timers, a PWM timer, serial interface, an A/D converter, a D/A converter, an external interrupt, and a watch prescaler. *: F2MC stands for FUJITSU Flexible Microcontroller.
s FEATURES
* F2MC-8L family CPU core Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc.
Instruction set optimized for controllers
(Continued)
s PACKAGE
80-pin Plastic QFP
80-pin Plastic QFP
80-pin Ceramic MQFP
(FPT-80P-M11)
(FPT-80P-M06)
(MQP-80C-P01)
MB89640 Series
(Continued) * Six types of timers 8-bit PWM timer: 2 channels (also usable reload timer) 8-bit pulse width counter (continuous measurement capable and applicable to remote control) 16-bit timer/counter 21-bit time-base counter 15-bit watch prescaler * Two 8-bit serial I/O Swichable transfer direction allows communication with various equipment. * 8-bit A/D converter: 8 channels Sense mode function enabling comparison at 12 instructions Activation by external input capable * External interrupt 1, external interrupt 2: 9 channels * 8-bit D/A converter: 2 channels 8-bit R-2R type * Low-power consumption modes (stop mode, sleep mode, watch mode, subclock mode) * Bus interface functions Including hold and ready functions
2
MB89640 Series
s PRODUCT LINEUP
Part number Parameter
MB89643
MB89645
MB89646
MB89647
MB89P647
MB89PV640
Piggyback/
Classification
Mass production products (mask ROM products)
One-time evaluation product PROM product for evaluation and
development
ROM size
32 K x 8 bits 8 K x 8 bits 16 K x 8 bits 24 K x 8 bits 32 K x 8 bits (internal mask (internal mask (internal mask (internal mask (internal PROM, programming with ROM) ROM) ROM) ROM) general-purpose programmer)
32 K x 8 bits (external ROM)
RAM size CPU functions
256 x 8 bits
512 x 8 bits
768 x 8 bits
1 K x 8 bits
Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time:
136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.4 s/10 MHz to 6.4 s/10 MHz, or 61.0 s/32.768 kHz 3.6 s/10 MHz to 57.6 s/10 MHz, or 562.5 s/32.768 kHz
Ports
9 (All also serve as a external interrupt.) 8 (All also serve as a bus control.) 24 (8 ports also serve as peripherals, 16 ports also serve as a bus control.) I/O ports (N-ch open-drain): 8 (All also serve as peripherals.) Output ports (N-ch open-drain): 16 (8 ports also serve as peripherals.) Total: 65 21 bits x 1 (in main clock mode), 15 bits x 1 (at 32.768 kHz) 8-bit reload timer operation x 2 channels 7/8-bit resolution PWM operation x 2 channels 8-bit PPG operation x 1 channel 8-bit timer operation (overflow output capable) 8-bit reload timer operation (toggled output capable) 8-bit pulse width measurement operation 16-bit timer operation 16-bit event counter operation 8 bits x 2 channels LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks: 0.8 s, 3.2 s, 12.8 s) 8-bit resolution x 8 channels A/D conversion mode (conversion time: 44 instructions) Sense mode (conversion time: 12 instructions) Continuous activation by an external activation or an internal timer capable Reference voltage input
Input ports (CMOS): Output ports (CMOS): I/O ports (CMOS):
Clock timer 8-bit PWM timer 8-bit pulse width counter
(Continuous measurement capable, measurement of "H" width/"L" width/from to /from to capable)
16-bit timer/ counter 8-bit serial I/O
8-bit A/D converter
(Continued)
3
MB89640 Series
(Continued)
Part number Parameter
MB89643
MB89645
MB89646
MB89647
MB89P647
MB89PV640
8-bit D/A converter
External interrupt 1, External interrupt 2
8-bit resolution x 2 channels, R-2R type 9 channels Watch mode, subclock mode, sleep mode, and stop mode CMOS 2.2 V to 6.0 V 2.7 V to 6.0 V MBM27C256A -20TV
Standby modes Process Operating voltage*1 EPROM for use
*1: Varies with conditions such as the operating frequency. (See section "s Electrical Characteristics.")
s PACKAGE AND CORRESPONDING PRODUCTS
Package MB89643 MB89645 MB89646 MB89647 MB89P647 MB89PV640 x x x
FPT-80P-M11 FPT-80P-M06 MQP-80C-P01 : Available
x : Not available
Note: For more information about each package, see section "s External Dimensions."
4
MB89640 Series
s DIFFERENCES AMONG PRODUCTS
1. Memory Size
Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points: * On the MB89643 register banks 16 to 32 cannot be used. * On the MB89P647, the program area starts from address 8007H but on the MB89PV640 and MB89647 starts from 8000H. (On the MB89P647, addresses 8000H to 8006H comprise the option setting area, option settings can be read by reading these addresses. On the MB89PV640 and MB89647, addresses 8000H to 8006H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P647.) * The stack area, etc., is set at the upper limit of the RAM. * The external areas are used.
2. Current Consumption
* In the case of the MB89PV640, add the current consumed by the EPROM which is connected to the top socket. * When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM. * However, the current consumption in sleep/stop modes is the same. (For more information, see sections "s Electrical Characteristics" and "s Example Characteristics.")
3. Mask Options
Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "s Mask Options." Take particular care on the following points: * A pull-up resistor cannot be set for P40 to P47 and P50 to P57 on the MB89P647. * For all products, P60 to P67 are available for no pull-up resistor when an A/D converter is used. * For all products, P50 to P57 are available for no pull-up resistor when a D/A converter is used. * Options are fixed on the MB89PV640.
5
6
s PIN ASSIGNMENT
MB89640 Series
P71/LI1 P70/LI0 P83/INT3 P82/INT2 P81/INT1 P80/INT0 X0A X1A MOD0 MOD1 X0 X1 VSS RST P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 (Top view)
(FPT-80P-M11)
P21/HAK P20/BUFC P17/A15 P16/A14 P15/A13 P14/A12 P13/A11 P12/A10 P11/A09 P10/A08 P07/AD7 P06/AD6 P05/AD5 P04/AD4 P03/AD3 P02/AD2 P01/AD1 P00/AD0 P37/PTO1 P36/WTO 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 P54/BZ P55/SCK2 P56/SO2 P57/SI2 VSS P40 P41 VCC P42 P43 P44 P45 P46 P47 P30/ADST P31/SCK1 P32/SO1 P33/SI1 P34/EC P35/PWC 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61
P72/LI2 P73/LI3 P74/LI4 P60/AN0 P61/AN1 P62/AN2 P63/AN3 P64/AN4 P65/AN5 P66/AN6 P67/AN7 AVSS AVRL AVRH AVCC DAVC P50/DA1 P51/DA2 P52/PWM P53/PTO2
MB89640 Series
(Top view) P74/LI4 P60/AN0 P61/AN1 P62/AN2 P63/AN3 P64/AN4 P65/AN5 P66/AN6 P67/AN7 AVSS AVRL AVRH AVCC DAVC P50/DA1 P51/DA2 P73/LI3 P72/LI2 P71/LI1 P70/LI0 P83/INT3 P82/INT2 P81/INT1 P80/INT0 X0A X1A MOD0 MOD1 X0 X1 VSS RST P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
101 102 103 104 105 106 107 108 109
93 92 91 90 89 88 87 86 85
Each pin inside the dashed line is for the MB89PV640 only.
P52/PWM P53/PTO2 P54/BZ P55/SCK2 P56/SO2 P57/SI2 VSS P40 P41 VCC P42 P43 P44 P45 P46 P47 P30/ADST P31/SCK1 P32/SO1 P33/SI1 P34/EC P35/PWC P36/WTO P37/PTO1
* Pin assignment on package top (MB89PV640 only) Pin no. 81 82 83 84 85 86 87 88 Pin name N.C. VPP A12 A7 A6 A5 A4 A3 Pin no. 89 90 91 92 93 94 95 96 Pin name A2 A1 A0 N.C. O1 O2 O3 VSS Pin no. 97 98 99 100 101 102 103 104 Pin name N.C. O4 O5 O6 O7 O8 CE A10 Pin no. 105 106 107 108 109 110 111 112 Pin name OE N.C. A11 A9 A8 A13 A14 VCC
N.C.: Internally connected. Do not use. 7
P17/A15 P16/A14 P15/A13 P14/A12 P13/A11 P12/A10 P11/A09 P10/A08 P07/AD7 P06/AD6 P05/AD5 P04/AD4 P03/AD3 P02/AD2 P01/AD1 P00/AD0 (FPT-80P-M06) (MQP-80C-P01)
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
110 111 112 81 82 83 84
100 99 98 97 96 95 94
MB89640 Series
s PIN DESCRIPTION
Pin no. QFP*1 11 12 9 10 14 QFP*2 MQFP*3 13 14 11 12 16 Pin name X0 X1 MOD0 MOD1 RST D C Operating mode selection pins Connect directly to VCC or VSS. Reset I/O pin This pin is an N-ch open-drain output type with pull-up resistor, and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L". General-purpose I/O ports Also serve as multiplex pins of lower address output and data I/O. General-purpose I/O ports Also serve as an upper address output. General-purpose output-only ports Also serve as a bus control signal output. Circuit type A Function Main clock crystal oscillator pins (Max. 10 MHz)
38 to 31
40 to 33
P00/AD0 to P07/AD7 P10/A08 to P17/A15 P20/BUFC, P21/HAK, P24/CLK, P27/ALE P22/HRQ, P23/RDY P25/WR, P26/RD P30/ADST
E
30 to 23 22, 21, 18, 15 20, 19 17, 16 46
32 to 25 24, 23, 20, 17 22, 21 19, 18 48
E G
E E F
General-purpose output-only ports Also serve as a bus control signal input. General-purpose output-only ports Also serve as a bus control signal output. General-purpose I/O port Also serves as an A/D converter external activation. This port is a hysteresis input type. General-purpose I/O port Also serves as the clock I/O for the serial I/O 1. This port is a hysteresis input type. General-purpose I/O ports Also serve as the data output for the serial I/O 1. These ports are a hysteresis input type. General-purpose I/O port Also serves as the external clock input for the 16-bit timer/ counter. This port is a hysteresis input type.
45
47
P31/SCK1
F
44, 43 42
46, 45 44
P32/SO1, P33/SI1 P34/EC
F
F
*1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01
(Continued)
8
MB89640 Series
(Continued) Pin no.
QFP*1 41 QFP*2 MQFP*3 43 Pin name P35/PWC
Circuit type F
Function General-purpose I/O port Also serves as the measured pulse input for the 8-bit pulse width counter. This port is a hysteresis input type. General-purpose I/O port Also serves as the toggle output for the 8-bit pulse width counter. This port is a hysteresis input type. General-purpose I/O port Also serves as the toggle output for the 1-channel PWM timer. N-ch medium-voltage open-drain output-only ports N-ch open-drain I/O port Also serves as a D/A channel 1 output. This port is a hysteresis input type. N-ch open-drain I/O port Also serves as a D/A channel 2 output. This port is a hysteresis input type. N-ch open-drain I/O port Also serves as the PWM output by the two PWM timers. This port is a hysteresis input type. N-ch open-drain I/O port Also serves as the toggle output for the 2-channel PWM timer. This port is a hysteresis input type. N-ch open-drain I/O port Also serves as a buzzer output. This port is a hysteresis input type. N-ch open-drain I/O port Also serves as the clock I/O for the serial I/O 2. This port is a hysteresis input type. N-ch open-drain I/O port Also serves as the data output for the serial I/O 2. This port is a hysteresis input type. N-ch open-drain I/O port Also serves as the data input for the serial I/O 2. This port is a hysteresis input type. N-ch open-drain output-only ports Also serve as the analog input for the A/D converter. These ports are a hysteresis input type. Input-only ports Also serve as external interrupt 1 input. These ports are a hysteresis input type.
40
42
P36/WTO
F
39
41
P37/PTO1
F
55, 54, 52 to 47 64
57, 56, 54 to 49 66
P40 to P47 P50/DA1
L K
63
65
P51/DA2
K
62
64
P52/PWM
H
61
63
P53/PTO2
H
60
62
P54/BZ
H
59
61
P55/SCK2
H
58
60
P56/SO2
H
57
59
P57/SI2
H
77 to 70
79 to 72
P60/AN0 to P67/AN7 P70/LI0 to P74/LI4
I
2, 1, 80 to 78
4 to 1, 80
J
*1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01
9
MB89640 Series
(Continued) Pin no.
QFP*1 7 8 53 13, 56 66 67, 68 65 69 3 to 6 QFP*2 MQFP*3 9 10 55 15, 58 68 69, 70 67 71 5 to 8 Pin name X0A X1A VCC VSS AVCC AVRH, AVRL DAVC AVSS P83/INT3 to P80/INT0 J Power supply pin Power supply (GND) pin A/D converter power supply pin Use this pin at the same voltage as VCC. A/D converter reference voltage input pins D/A converter power supply pin Use this pin at the same voltage as VCC. Analog circuit power supply pin Use this pin at the same voltage as VSS. Input-only ports Also serve as an external interrupt 2 input. These ports are a hysteresis input type.
Circuit type B
Function Subclock oscillator pins (32.768 kHz)
*1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01
10
MB89640 Series
* External EPROM pins (MB89PV640 only) Pin no. 82 83 84 85 86 87 88 89 90 91 93 94 95 96 98 99 100 101 102 103 104 105 107 108 109 110 111 112 81 92 97 106 Pin name VPP A12 A7 A6 A5 A4 A3 A2 A1 A0 O1 O2 O3 VSS O4 O5 O6 O7 O8 CE A10 OE A11 A9 A8 A13 A14 VCC N.C. I/O O O "H" level output pin Address output pins Function
I
Data input pins
O I
Power supply (GND) pin Data input pins
O O O O
ROM chip enable pin Outputs "H" during standby. Address output pin ROM output enable pin Outputs "L" at all times. Address output pins
O O O -- EPROM power supply pin Internally connected pins Be sure to leave them open.
11
MB89640 Series
s I/O CIRCUIT TYPE
Type A
X1
Circuit
Remarks Main clock * At an oscillation feedback resistor of approximately 1 M/5.0 V
X0
Standby control signal
B
X1A
X0A
Subclock * At an oscillation feedback resistor of approximately 4.5 M/5.0 V
Standby control signal
C
D
R P-ch
* At an output pull-up resistor (P-ch) of approximately 50 k/5.0 V * Hysteresis input
N-ch
E
R P-ch P-ch
* CMOS output * CMOS input
N-ch
* Pull-up resistor optional
(Continued)
12
MB89640 Series
(Continued)
Type F
R P-ch P-ch
Circuit * CMOS output * Hysteresis input
Remarks
N-ch
* Pull-up resistor optional G
R P-ch P-ch
* CMOS output
N-ch
* Pull-up resistor optional * N-ch open-drain output * Hysteresis input
H
R P-ch
N-ch
* Pull-up resistor optional I
R P-ch P-ch N-ch Analog input
* N-ch open-drain output * Analog input
* Pull-up resistor optional * Hysteresis input
J
R
* Pull-up resistor optional
(Continued)
13
MB89640 Series
(Continued)
Type K
R P-ch
Circuit
Remarks * N-ch open-drain output * Hysteresis input * Analog output
P-ch N-ch Analog output
Enable
* Pull-up resistor optional * N-ch open-drain output * Medium voltage
L
R P-ch
N-ch
* Pull-up resistor optional
14
MB89640 Series
s HANDLING DEVICES
1. Preventing Latchup
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "s Electrical Characteristics" is applied between VCC and VSS. When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings. Also, take care to prevent the analog power supply (AVCC and AVRH) and analog input from exceeding the digital power supply (VCC) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters
Connect to be AVCC = DAVC = VCC and AVSS = AVRH = VSS even if the A/D and D/A converters are not in use.
4. Treatment of N.C. Pins
Be sure to leave (internally connected) N.C. pins open.
5. Power Supply Voltage Fluctuations
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched.
6. Precautions when Using an External Clock
Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.
15
MB89640 Series
s PROGRAMMING TO THE EPROM ON THE MB89P647
The MB89P647 is an OTPROM version of the MB89640 series.
1. Features
* 32-Kbyte PROM on chip * Options can be set using the EPROM programmer. * Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)
2. Memory Space
Memory space in each mode such as 32-Kbyte PROM, option area is diagrammed below.
Address 0000H
Single chip
EPROM mode (Corresponding addresses on the EPROM programmer)
I/O 0080H RAM 0180H Not available 8000H Not available 8007H 0007H 0000H Option area
PROM 32 KB
EPROM 32 KB
FFFFH
7FFFH
* Precautions (1) The program area of the MB89P647 is 7 bytes smaller than that of the MB89PV640 and MB89647 to provide an option area. Note this point during program development. (2) During normal operation, the option data is read when the option area is read from the CPU.
3. Programming to the EPROM
In EPROM mode, the MB89P647 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter. * Programming procedure (1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH while operating as internal ROM mode assign to 0007H to 7FFFH in EPROM mode). Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each corresponding option, see "7. Setting OTPROM Options.") (3) Program with the EPROM programmer. 16
MB89640 Series
4. Recommended Screening Conditions
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.
Program, verify
Aging +150C, 48 Hrs.
Data verification
Assembly
5. Programming Yield
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.
6. EPROM Programmer Socket Adapter
Package FPT-80P-M06 FPT-80P-M11 Compatible socket adapter ROM-80QF-28DP-8L2 ROM-80QF2-28DP-8L
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 F between VPP and VSS or VCC and VSS can stabilize programming operations.
17
MB89640 Series
7. Setting OTPROM Options
The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map: * OTPROM option bit map Bit 7
Vacancy 0000H Readable and writable
Bit 6
Vacancy Readable and writable
Bit 5
Vacancy Readable and writable
Bit 4
Single/dualclock system 1: Dual clock 2: Single clock
Bit 3 Reset pin output 1: Yes 2: No P03 Pull-up 1: No 0: Yes P13 Pull-up 1: No 0: Yes P33 Pull-up 1: No 0: Yes P63 Pull-up 1: No 0: Yes P73 Pull-up 1: No 0: Yes P83 Pull-up 1: No 0: Yes
Bit 2 Power-on reset 1: Yes 2: No P02 Pull-up 1: No 0: Yes P12 Pull-up 1: No 0: Yes P32 Pull-up 1: No 0: Yes P62 Pull-up 1: No 0: Yes P72 Pull-up 1: No 0: Yes P82 Pull-up 1: No 0: Yes
Bit 1 00: 24/FCH 01: 217/FCH P01 Pull-up 1: No 0: Yes P11 Pull-up 1: No 0: Yes P31 Pull-up 1: No 0: Yes P61 Pull-up 1: No 0: Yes P71 Pull-up 1: No 0: Yes P81 Pull-up 1: No 0: Yes
Bit 0 10: 214/FCH 11: 218/FCH P00 Pull-up 1: No 0: Yes P10 Pull-up 1: No 0: Yes P30 Pull-up 1: No 0: Yes P60 Pull-up 1: No 0: Yes P70 Pull-up 1: No 0: Yes P80 Pull-up 1: No 0: Yes
Oscillation stabilization time
0001H
P07 Pull-up 1: No 0: Yes P17 Pull-up 1: No 0: Yes P37 Pull-up 1: No 0: Yes P67 Pull-up 1: No 0: Yes
Vacancy
P06 Pull-up 1: No 0: Yes P16 Pull-up 1: No 0: Yes P36 Pull-up 1: No 0: Yes P66 Pull-up 1: No 0: Yes
Vacancy Readable and writable Vacancy Readable and writable
P05 Pull-up 1: No 0: Yes P15 Pull-up 1: No 0: Yes P35 Pull-up 1: No 0: Yes P65 Pull-up 1: No 0: Yes
Vacancy Readable and writable Vacancy Readable and writable
P04 Pull-up 1: No 0: Yes P14 Pull-up 1: No 0: Yes P34 Pull-up 1: No 0: Yes P64 Pull-up 1: No 0: Yes P74 Pull-up 1: No 0: Yes
Vacancy Readable and writable
0002H
0003H
0004H
0005H Readable and writable Vacancy 0006H Readable and writable
Notes: * Set each bit to 1 to erase. * Do not write 0 to the vacant bit. The read value of the vacant bit is 1, unless 0 is written to it.
18
MB89640 Series
s PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE
1. EPROM for Use
MBM27C256A-20TV
2. Programming Socket Adapter
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below. Package LCC-32 (Rectangle) Adapter socket part number ROM-32LC-28DP-YG
Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
3. Memory Space
Memory space in each mode, such as 32-Kbyte PROM is diagrammed below.
Address 0000H I/O 0080H RAM 0480H Not available 8000H Not available 8007H 0007H 0000H Not available Single chip Corresponding addresses on the EPROM programmer
PROM 32 KB
EPROM 32 KB
FFFFH
7FFFH
4. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 0007H to 7FFFH. (3) Program to 0000H to 7FFFH with the EPROM programmer.
19
MB89640 Series
s BLOCK DIAGRAM
X0 X1
Main clock oscillator Clock controller
CMOS I/O port
8-bit pulse width counter
Port 3
P36/WTO P35/PWC
X0A X1A RST
Subclock oscillator (32.768 kHz) 16-bit timer/counter Reset circuit Time-base timer Serial I/O 1 Internal bus 2-channel 8-bit PWM timer Serial I/O 2
P34/EC P33/SI1 P32/SO1 P31/SCK1 P30/ADST P37/PTO1 P52/PWM P53/PTO2 P57/SI2 P56/SO2 P55/SCK2 P54/BZ Port 5 P51/DA2 P50/DA1
Watch prescaler
Buzzer output Port 0 and port 1 P00/AD0 to P07/AD7 P10/A08 to P17/A15 8 CMOS I/O ports 2-channel 8-bit D/A converter
8
N-ch open-drain I/O port DAVC External bus interface Port 4 Medium-voltage N-ch open-drain output port N-ch open-drain output port P40 to P47 P67/AN7 P66/AN6 P65/AN5 P64/AN4 P63/AN3 P62/AN2 P61/AN1 P60/AN0 AVRH AVRL AV CC AV SS P74/LI4 P73/LI3 P72/LI2 P71/LI1 P70/LI0 P83/INT3 P82/INT2 P81/INT1 P80/INT0
MOD0 MOD1 P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC
Port 2
8-bit A/D converter CMOS output port ROM
F2MC-8L CPU RAM
CMOS input port Port 7 Port 8
External interrupt 1
5
Other pins V CC, V SS
External interrupt 2
4
CMOS input port
20
Port 6
8
MB89640 Series
s CPU CORE
1. Memory Space
The microcontrollers of the MB89640 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89640 series is structured as illustrated below. Memory Space
MB89P647 MB89647 I/O 0080 H RAM 768 B 0100 H Register 0200 H 0280 H 0380 H 0480 H External area 8000 H Not available 8007 H A000 H External ROM 32 KB FFFF H C000 H E000 H FFFF H Not available ROM 8 KB FFFF H C000 H ROM 16 KB FFFF H ROM 24 KB FFFF H ROM 32 KB 8007 H External area External area External area 8000 H Not available 0480 H External area 0200 H Register 0200 H 0100 H Register RAM 1 KB
0000 H
MB89PV640 I/O
0000 H
MB89643 I/O
0000 H
MB89645 I/O
0000 H
MB89646 I/O
0000 H
0080 H RAM 1 KB 0100 H Register 0200 H
0080 H RAM 256 B 0100 H Register 0180 H Not available 0280 H
0080 H RAM 512 B 0100 H
0080 H
Note: Since addresses 8000H to 8006H for the MB89P647 comprise an option area, do not use this area for the MB89PV640 and MB89647.
21
MB89640 Series
2. Registers
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:
Program counter (PC): Accumulator (A): Temporary accumulator (T): Index register (IX): Extra pointer (EP): Stack pointer (SP): Program status (PS):
A 16-bit register for indicating instruction storage positions A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used. A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used. A 16-bit register for index modification A 16-bit pointer for indicating a memory address A 16-bit register for indicating a stack area A 16-bit register for storing a register pointer, a condition code
16 bits PC A T IX EP SP PS : Program counter : Accumulator : Temporary accumulator : Index register : Extra pointer : Stack pointer : Program status
Initial value FFFDH Undefined Undefined Undefined Undefined Undefined I-flag = 0, IL1, 0 = 11 Other bits are undefined.
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)
Structure of the Program Status Register
15 PS
14
13 RP
12
11
10
9
8
7 H
6 I
5
4
3 N
2 Z
1 V
0 C
Vacancy Vacancy Vacancy
IL1, 0
RP
CCR
22
MB89640 Series
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below. Rule for Conversion of Actual Addresses of the General-purpose Register Area
RP Lower OP codes b1 b0
"0" "0" "0" "0" "0" "0" "0" "1" R4 R3 R2 R1 R0 b2
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt. H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions. I-flag: IL1, 0: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset. Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.
IL1 0 0 1 1
IL0 0 1 0 1
Interrupt level 1 2 3
High-low High
Low = no interrupt
N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0. Z-flag: V-flag: Set when an arithmetic operation results in 0. Cleared otherwise. Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.
C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.
23
MB89640 Series
The following general-purpose registers are provided: General-purpose registers: An 8-bit register for storing data The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 16 banks can be used on the MB89643 and a total of 32 banks can be used on the MB89645/646/647/P647/PV640. The bank currently in use is indicated by the register bank pointer (RP). Note: The number of register banks that can be used varies with the RAM size. Register Bank Configuration
This address = 0100 H + 8 x (RP) R0 R1 R2 R3 R4 R5 R6 R7 32 banks Memory area
24
MB89640 Series
s I/O MAP
Address 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH (R/W) (R/W) (R/W) (R/W) SMR1 SDR1 SMR2 SDR2 (R/W) (R/W) (R/W) TMCR TCHR TCLR (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (W) (R/W) (R/W) (R/W) (R/W) (R) (R) SYCC STBC WDTC TBCR WPCR PDR3 DDR3 PDR4 BUZR PDR5 PDR6 PDR7 PDR8 Read/write (R/W) (W) (R/W) (W) (R/W) (W) Register name PDR0 DDR0 PDR1 DDR1 PDR2 BCTR Register description Port 0 data register Port 0 data direction register Port 1 data register Port 1 data direction register Port 2 data register External bus control register Vacancy System clock control register Standby control register Watchdog timer control register Time-base timer control register Watch prescaler control register Port 3 data register Port 3 data direction register Port 4 data register Buzzer register Port 5 data register Port 6 data register Port 7 data register Port 8 data register Vacancy Vacancy Vacancy Vacancy 16-bit timer control register 16-bit timer count register (H) 16-bit timer count register (L) Vacancy Serial 1 mode register Serial 1 data register Serial 2 mode register Serial 2 data register
(Continued)
25
MB89640 Series
(Continued)
Address 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H 32H 33H 34H 35H to 7AH 7BH 7CH 7DH 7EH 7FH Note: Do not use vacancies. (W) (W) (W) ILR1 ILR2 ILR3 (R/W) (R/W) (R/W) (R/W) EIC1 EIC2 EIE2 EIF2 (R/W) (R/W) (R/W) (W) (W) (R/W) (R/W) (R/W) CNTR1 CNTR2 CNTR3 COMR1 COMR2 PCR1 PCR2 RLBR (R/W) (W) (W) DACR DADR1 DADR2 Read/write (R/W) (R/W) (R/W) Register name ADC1 ADC2 ADCD Register description A/D converter control register 1 A/D converter control register 2 A/D converter data register Vacancy D/A converter control register D/A converter data register 1 D/A converter data register 2 Vacancy PWM timer control register 1 PWM timer control register 2 PWM timer control register 3 PWM timer compare register 1 PWM timer compare register 2 PWC pulse width control register 1 PWC pulse width control register 2 PWC reload buffer register Vacancy External interrupt 1 control register 1 External interrupt 1 control register 2 External interrupt 2 enable register External interrupt 2 flag register Vacancy Vacancy Interrupt level setting register 1 Interrupt level setting register 2 Interrupt level setting register 3 Vacancy
26
MB89640 Series
s ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
(AVSS = VSS = 0.0 V)
Parameter
Symbol VCC AVCC DAVC AVRH AVRL VPP VI
Value Min. VSS - 0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 VSS - 0.3 Max. VSS + 7.0 VSS + 7.0 VSS + 7.0 13.0 VCC + 0.3 VSS + 7.0 VCC + 0.3
VSS + 17.0
Unit
Remarks
Power supply voltage
V V V V V V V V V mA mA mA mA mA mA mA mA mW
* AVRH must not exceed AVCC + 0.3 V. AVRL must not exceed AVRH. MOD1 pin on MB89P647 P52 to P57 with a pull-up resistor and other input ports P52 to P57 without a pull-up resistor P40 to P47 and P52 to P57 with a pull-up resistor and other output ports P40 to P47 without a pull-up resistor P52 to P57 without a pull-up resistor
A/D converter reference input voltage Program voltage
Input voltage VI2 VO Output voltage VO2 VO3 "L" level maximum output current "L" level average output current "L" level total average output current "L" level total maximum output current "H" level maximum output current "H" level average output current "H" level total average output current "H" level total maximum output current Power consumption IOL IOLAV IOLAV IOL IOH IOHAV IOHAV IOH PD
VSS + 7.0 20 4 40 100 -20 -4 -20 -50 500
Average value (operating current x operating rate) Average value (operating current x operating rate)
Average value (operating current x operating rate) Average value (operating current x operating rate)
(Continued)
27
MB89640 Series
(Continued)
(AVSS = VSS = 0.0 V)
Parameter Operating temperature Storage temperature
Symbol TA Tstg
Value Min. -40 -55 Max. +85 +150
Unit C C
Remarks
* : Use DAVC and AVCC and VCC set at the same voltage. Take care so that DAVC and AVCC does not exceed VCC, such as when power is turned on. Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2. Recommended Operating Conditions
(AVSS = VSS = 0.0 V)
Parameter
Symbol
Value Min. 2.2* Max. 6.0* 6.0* 6.0 AVCC 2.0 +85
Unit V V V V V C
Remarks Normal operation assurance range* (MB89643/645/646/647) Normal operation assurance range* (MB89P647/PV640) Retains the RAM state in stop mode
Power supply voltage
VCC AVCC DAVC AVRH AVRL TA
2.7* 1.5
A/D converter reference input voltage Operating temperature
3.0 0.0 -40
* : These values vary with the operating frequency and analog assurance range. See Figure 1, "5. A/D Converter Electrical Characteristics," and "6. D/A Converter Electrical Characteristics."
28
MB89640 Series
6
5 Operation assurance range Operating voltage (V)
Analog accuracy assured in the VCC = AVCC = DAVC = 3.5 V to 6.0 V range.
4
3
2
1
1.0
5.0
10.0
Main clock operating frequency (at an instruction cycle of 4/FCH) (MHz) 4.0 2.0 1.0 0.8 0.5 0.4
Minimum execution time (instruction cycle) (s) Note: The shaded area is assured only for the MB89643/645/646/647.
Figure 1
Operating Voltage vs. Main Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH. Since the operating voltage range is dependent on the instruction cycle, see minimum execution time if the operating speed is switched using a gear.
29
MB89640 Series
3. DC Characteristics
(AVCC = DAVC = VCC = +5.0 V, AVSS = VSS = 0.0 V, FCH = 10 MHz, FCL = 32.768 kHz, TA = -40C to +85C)
Parameter
Symbol
Pin P00 to P07, P10 to P17, P22, P23
RST, P30 to P37, P50, P51, P70 to P74, P80 to P83
Condition
Value Min. 0.7 VCC Typ. Max.
VCC + 0.3
Unit V
Remarks
VIH
"H" level input voltage*1
VIHS
0.8 VCC
VCC + 0.3
V With pull-up resistor
P52 to P57 VIHS2 VIL "L" level input voltage*1 P52 to P57 P00 to P07, P10 to P17, P22, P23 RST, P30 to P37, P50 to P57, P70 to P74, P80 to P83 P40 to P47 P52 to P57 P60 to P67 VD3 "H" level output voltage "L" level output voltage P40 to P47, P52 to P57
P00 to P07, P10 to P17, P20 to P27, P30 to P37 P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67
0.8 VCC
VSS - 0.3

VSS + 6.0
V V
Without pullup resistor
0.3 VCC
VILS
VSS - 0.3
0.2 VCC
V Without pullup resistor Without pullup resistor With pull-up resistor
VD Open-drain output pin application voltage VD2
VSS - 0.3 VSS - 0.3
VSS + 15.0
V V
VSS + 6.0
VSS - 0.3
VCC + 0.3
V
VOH
IOH = -2.0 mA
2.4
V
VOL VOL2
IOL = +1.8 mA IOL = +4.0 mA
0.4 0.4 5
V V A Without pullup resistor
RST
Input leakage current (Hi-z output ILI1 leakage current)
P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P70 to P74, 0.45 V < VI < VCC P80 to P83, MOD0, MOD1
(Continued)
30
MB89640 Series
(AVCC = DAVC = VCC = +5.0 V, AVSS = VSS = 0.0 V, FCH = 10 MHz, FCL = 32.768 kHz, TA = -40C to +85C)
Parameter
Symbol
Pin
P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64, P70 to P74, P80 to P83, RST
Condition
Value Min. Typ. Max.
Unit
Remarks
Pull-up resistance
RPULL
VI = 0.0 V
25
50
100
k
Without pullup resistor
ICC1
VCC = +5.0 V * Main clock operation * High speed*2 VCC = +3.0 V * Main clock operation * Low speed*3
VCC = +5.0 V * Main clock sleep * High speed*2
-- -- -- -- --
10 11 1.5 2.5 3
20 23 2 5 7
mA mA mA mA mA MB89P647 only MB89P647 only
ICC2
ICS1 Power supply current VCC ICS2 ICS3 ICCH
VCC = +3.0 V * Main clock sleep * Low speed*3 VCC = +3.0 V Subclock sleep
-- -- -- -- --
1 25 -- 50 1
1.5 50 10 100 3
mA A A A mA A MB89P647 only
TA = +25C
Subclock stop
VCC = +3.0 V Subclock operation (32.768 kHz)
ICSB
ICCT Power supply current IA
VCC
VCC = +3.0 V Watch mode (32.768 kHz) * Main clock operation * High speed*2 f = 1 MHz
--
--
15
AVCC Other than AVCC, AVSS, VCC, and VSS
--
1
3
mA
Input capacitance
CIN
--
10
pF
*1: Connect MOD0 and MOD1 to VCC or VSS. *2: High-speed operation is the operation when the system clock is set to the maximum speed by the system clock select bit at 10-MHz clock. *3: Low-speed operation is the operation when the system clock is set to the maximum speed by the system clock select bit at 10-MHz clock.
31
MB89640 Series
4. AC Characteristics
(1) Reset Timing
(VCC = +5.0 V10%, AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter RST "L" pulse width
Symbol tZLZH
Condition --
Value Min. 48 tXCYL Max. --
Unit ns
Remarks
* : tXCYL is the oscillation cycle (1/FCH) to input to the X0 pin.
tZLZH
RST
0.2 V CC
0.2 V CC
(2) Power-on Reset
(AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter Power supply rising time Power supply cut-off time
Symbol tR tOFF
Condition --
Value Min. -- 1 Max. 50 --
Unit ms ms
Remarks
Due to repeated operation
Note: Make sure that power supply rises within the selected oscillation stabilization time. For example, when the main clock is operating at 10 MHz (FCH) and the oscillation stabilization time select option has been set to 214/FCH, the oscillation stabilization delay time is 1.6 ms and accordingly the maximum value of power supply rising time is about 1.6 ms. Keep in mind that abrupt changes in power supply voltage may cause a power-on reset. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.
tR 2.0 V
tOFF
VCC
0.2 V 0.2 V 0.2 V
32
MB89640 Series
(3) Clock Timing
(AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter Clock frequency Clock cycle time
Symbol FCH FCL tXCYL tLXCYL PWH PWL PWHL PWLL tCR tCF
Pin X0, X1 X0A, X1A X0, X1 X0A, X1A X0 X0A X0
Condition
Value Min. 1 -- 100 -- Typ. -- 32.768 -- 30.5 -- 30.5 -- Max. 10 -- 1000 -- -- -- 10
Unit MHz kHz ns s ns s ns
Remarks
--
20 -- --
External clock
Input clock pulse width
Input clock rising/falling time
External clock
X0 and X1 Timing and Conditions
tXCYL PWH tCR 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC tCF PWL
X0
0.2 VCC
Main Clock Conditions
When a crystal or ceramic resonator is used.
When an external clock is used.
X0
X1
X0
X1 Open
33
MB89640 Series
X0A and X1A Timing and Conditions
tLXCYL PWHL tCR 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC tCF PWLL
X0A
0.2 VCC
Subclock Conditions
When a crystal or ceramic resonator is used.
When an external clock is used.
X0A
X1A
X0A
X1A Open
(4) Instruction Cycle Parameter Symbol Value (typical)
4/FCH system clock selection 11
Unit s s s s
Remarks tinst = 0.4 s when operating at FCH = 10 MHz tinst = 0.8 s when operating at FCH = 10 MHz tinst = 1.6 s when operating at FCH = 10 MHz tinst = 6.4 s when operating at FCH = 10 MHz
8/FCH system clock selection 10
Instruction cycle tinst (minimum execution time)
16/FCH system clock selection 01
64/FCH system clock selection 00
34
MB89640 Series
(5) Recommended Resonator Manufacturers Sample Application of Piezoelectric Resonator (FAR series)
X0
X1 FAR*
C1
C2
* : Fujitsu Acoustic Resonator C1 = C2 = 20 pF8 pF (built-in FAR)
FAR part number (built-in capacitor type) FAR-C4CB-08000-M02 FAR-C4CB-10000-M02 Inquiry: FUJITSU LIMITED
Frequency 8.00 MHz 10.00 MHz
Initial deviation of FAR frequency (TA = +25C) 0.5% 0.5%
Temperature characteristic of FAR frequency (TA = -20C to +60C) 0.5% 0.5%
35
MB89640 Series
Sample Application of Ceramic Resonator
X0
X1
*
C1
C2
Resonator manufacturer* Kyocera Corporation Murata Mfg. Co., Ltd.
Resonator KBR-7.68MWS KBR-8.0MWS CSA8.00MTZ
Frequency 7.68 MHz 8.0 MHz 8.0 MHz
C1 (pF) 33 33 30
C2 (pF) 33 33 30
R (k)
Inquiry: Kyocera Corporation * AVX Corporation North American Sales Headquarters: TEL 1-803-448-9411 * AVX Limited European Sales Headquarters: TEL 44-1252-770000 * AVX/Kyocera H.K. Ltd. Asian Sales Headquarters: TEL 852-363-3303 Murata Mfg. Co., Ltd. * Murata Electronics North America, Inc.: TEL 1-404-436-1300 * Murata Europe Management GmbH: TEL 49-911-66870 * Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233 (6) Clock Output Timing
(VCC = +5.0 V10%, AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter Cycle time CLK CLK
Symbol tCYC tCHCL CLK
Pin
Condition
Value Min. 200 Max. -- 100
Unit ns ns
Remarks tXCYL x 2 at 10 MHz oscillation Approx. tCYL/2 at 10 MHz oscillation
-- CLK 30
tCYC tCHCL 2.4 V 2.4 V 0.8 V
CLK
36
MB89640 Series
(7) Bus Read Timing
(VCC = +5.0 V10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter Valid address RD time RD pulse width Valid address read data time RD read data time RD data hold time RD ALE time RD address invalid time RD CLK time CLK RD time RD BUFC time BUFC Valid address time
Symbol tAVRL tRLRH tAVDV tRLDV tRHDX tRHLH tRHAX tRLCH tCLRH tRLBL tBHAV
Pin RD, A15 to 08, AD7 to 0 RD AD7 to 0, A15 to 08 RD, AD7 to 0 AD7 to 0, RD RD, ALE
RD, A15 to 08
Condition
Value Min.
1/4 tinst* - 64 ns 1/2 tinst* - 20 ns
Max. -- -- 200 120 -- -- -- -- -- -- --
Unit ns ns ns ns ns ns ns ns ns ns ns
Remarks
1/2 tinst*
1/2 tinst* - 80 ns
No wait No wait
--
0
1/4 tinst* - 40 ns 1/4 tinst* - 40 ns 1/4 tinst* - 40 ns
RD, CLK RD, CLK RD, BUFC
A15 to 08, AD7 to 0, BUFC
0 -5 5
* : For information on tinst, see "(4) Instruction Cycle."
CLK
2.4 V 0.8 V
tRHLH
ALE
0.8 V
AD
2.4 V 0.8 V tAVDV
0.7 VCC 0.3 VCC
0.7 VCC 0.3 VCC tRHDX 2.4 V 0.8 V tCLRH tRHAX
2.4 V 0.8 V
A
2.4 V 0.8 V tAVRL tRLCH tRLDV tRLRH
2.4 V 0.8 V
RD
0.8 V tRLBL
2.4 V tBHAV 2.4 V
BUFC
0.8 V
37
MB89640 Series
(8) Bus Write Timing
(VCC = +5.0 V10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter Valid address ALE time ALE address invalid time Valid address WR time WR pulse width Write data WR time WR address invalid time WR data hold time WR ALE time WR CLK time CLK WR time ALE pulse width ALE CLK time
Symbol tAVLL tLLAX tAVWL tWLWH tDVWH tWHAX tWHDX tWHLH tWLCH tCLWH tLHLL tLLCH
Pin
AD7 to 0, ALE, A15 to 08 AD7 to 0, ALE, A15 to 08
Condition
Value Min.
1/4 tinst*1 - 64 ns*2
Max. -- -- -- -- -- -- -- -- -- --
*2 *2
Unit ns ns ns ns ns ns ns ns ns ns ns ns
Remarks
5
1/4 tinst*1 - 60 ns 1/2 tinst - 20 ns 1/2 tinst - 60 ns
*1 *1 *1 *1 *1 *1
*2
WR, ALE WR
AD7 to 0, WR WR, A15 to 08 AD7 to 0, WR
--
1/4 tinst - 40 ns 1/4 tinst - 40 ns 1/4 tinst - 40 ns 1/4 tinst - 40 ns
WR, ALE WR, CLK WR, CLK ALE ALE, CLK
0
1/4 tinst - 35 ns 1/4 tinst - 30 ns
*1 *1
-- --
*1: For information on tinst, see "(4) Instruction Cycle." *2: These characteristics are also applicable to the bus read timing.
CLK
tLHLL tLLCH
2.4 V 0.8 V
ALE
2.4 V 0.8 V tAVLL tLLAX 2.4 V 0.8 V tDVWH 2.4 V 0.8 V tAVWL tWLCH tWLWH
tWHLH 0.8 V
AD
2.4 V 2.4 V 0.8 V 0.8 V
2.4 V 0.8 V tWHDX 2.4 V 0.8 V tCLWH tWHAX 2.4 V
A
WR
0.8 V
38
MB89640 Series
(9) Ready Input Timing
(VCC = +5.0 V10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter RDY valid CLK time CLK RDY invalid time
Symbol tYVCH tCHYX
Pin RDY, CLK RDY, CLK
Condition --
Value Min. 60 0 Max. -- --
Unit ns ns
Remarks * *
* : These characteristics are also applicable to the read cycle.
CLK
2.4 V
2.4 V
ALE
AD
Address
Data
A
WR
tYVCH tCHYX
RDY
tYVCH tCHYX Note: The bus cycle is also extended in the read cycle in the same manner.
39
MB89640 Series
(10) Serial I/O Timing
(VCC = +5.0 V10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter Serial clock cycle time SCK1 SO1 time SCK2 SO2 time Valid SI1 SCK1 Valid SI2 SCK2 SCK1 valid SI1 hold time SCK2 valid SI2 hold time Serial clock "H" pulse width Serial clock "L" pulse width SCK1 SO1 time SCK2 SO2 time Valid SI1 SCK1 Valid SI2 SCK2 SCK1 valid SI1 hold time SCK2 valid SI2 hold time
Symbol tSCYC tSLOV tIVSH tSHIX tSHSL tSLSH tSLOV tIVSH tSHIX
Pin SCK1, SCK2 SCK1, SO1 SCK2, SO2 SI1, SCK1 SI2, SCK2 SCK1, SI1 SCK2, SI2 SCK1, SCK2 SCK1, SCK2 SCK1, SO1 SCK2, SO2 SI1, SCK1 SI2, SCK2 SCK1, SI1 SCK2, SI2
Condition
Value Min. 2 tinst* -200 Max. -- 200 -- -- -- -- 200 -- --
Unit s ns s s s s ns s s
Remarks
Internal shift clock mode
1/2 tinst* 1/2 tinst* 1 tinst* 1 tinst*
External shift clock mode
0 1/2 tinst* 1/2 tinst*
* : For information on tinst, see "(4) Instruction Cycle."
40
MB89640 Series
Internal Shift Clock Mode
tSCYC
SCK1 SCK2
2.4 V 0.8 V 0.8 V
tSLOV
SO1 SO2
2.4 V 0.8 V
tIVSH
tSHIX 0.8 VCC 0.2 VCC
SI1 SI2
0.8 VCC 0.2 VCC
External Shift Clock Mode
tSLSH tSHSL
SCK1 SCK2
0.8 VCC 0.2 VCC 0.2 VCC
0.8 VCC
tSLOV
SO1 SO2
2.4 V 0.8 V
tIVSH
tSHIX 0.8 VCC 0.2 VCC
SI1 SI2
0.8 VCC 0.2 VCC
41
MB89640 Series
(11) Peripheral Input Timing
(VCC = +5.0 V10%, FCH = 10 MHz, AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter Peripheral input pulse "H" width 1 Peripheral input pulse "L" width 1 Peripheral input pulse "H" width 2 Peripheral input pulse "L" width 2 Peripheral input pulse "H" width 2 Peripheral input pulse "L" width 2
Symbol tILIH1 tIHIL1 tILIH2 tIHIL2 tILIH2 tIHIL2
Pin PWC, EC, INT0 to INT3 PWC, EC, INT0 to INT3 ADST
Condition
Value Min. 2 tinst* Max. -- -- -- -- -- --
Unit s s s s s s
Remarks
-- 2 tinst* 32 tinst* A/D mode 32 tinst* 8 tinst* Sense mode 8 tinst*
ADST ADST ADST
* : For information on tinst, see "(4) Instruction Cycle."
tIHIL1
tILIH1
PWC EC INT0 to 3
0.8 VCC 0.2 VCC 0.2 VCC
0.8 VCC
tIHIL2
tILIH2
ADST
0.2 VCC
0.8 VCC 0.2 VCC
0.8 VCC
42
MB89640 Series
5. A/D Converter Electrical Characteristics
(AVCC = VCC = +3.5 V to +6.0 V, FCH = 10 MHz, AVSS = VSS = AVRL = 0.0 V, TA = -40C to +85C)
Parameter Resolution Total error Linearity error Differential linearity error Zero transition voltage Full-scale transition voltage Interchannel disparity A/D mode conversion time Sense mode conversion time Analog port input current Analog input voltage Reference voltage
Symbol
Pin
Condition --
Value Min. -- -- -- -- Typ. -- -- -- -- +0.5
AVRH - 1.5
Max. 8 3.0 1.0 0.9 +2.0
AVRH + 1.5
Unit bit LSB LSB LSB LSB LSB LSB tinst* tinst* A V V A
Remarks
--
VOT -- VFST
AVRH = AVCC
-1.0
AVRH - 4.5
-- -- -- -- -- IAIN -- -- IR
When A/D conversion is activated AVRH = 5.0 V When A/D conversion is stopped AVRH = 5.0 V
-- 44 12 -- -- -- 100
0.5 -- -- 10 AVRH AVCC
AN0 to AN7
-- 0 0 --
Reference voltage supply current IRH
AVRH
--
--
1
A
* : For information on tinst, see "(4) Instruction Cycle."
43
MB89640 Series
(1) A/D Glossary * Resolution Analog changes that are identifiable with the A/D converter. When the number of bits is 8, analog voltage can be divided into 28 = 256. * Linearity error (unit: LSB) The deviation of the straight line connecting the zero transition point ("0000 0000" "0000 0001") with the full-scale transition point ("1111 1111" "1111 1110") from actual conversion characteristics * Differential linearity error (unit: LSB) The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value * Total error (unit: LSB) The difference between theoretical and actual conversion values
Digital output 1111 1111 1111 * 1110
* * * * * * * * * * * * * * * * * * *
Theoretical conversion value Actual conversion value (1 LSB x N + VOT) AVRH - AVRL 256 VNT - (1 LSB x N + VOT) 1 LSB V( N + 1 ) T - VNT - 1 1 LSB VNT - (1 LSB x N + 1 LSB) 1 LSB
1 LSB =
Linearity error = Differential linearity error = Total error = 0010 0001 0000 VOT VNT V(N + 1)T VFST Analog input
Linearity error
0000 0000 0000
(2) Precautions * Input impedance of the analog input pins The A/D converter used for the MB89640 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion. For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below 10 k). Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about 0.1 F for the analog input pin.
44
MB89640 Series
Analog Input Equivalent Circuit
Sample hold circuit . C = 33 pF . Analog input pin Comparator If the analog input impedance is higher than 10 k, it is recommended to contact an external capacitor of about 0.1 F. . R = 6 k . Close for 8 instruction cycles after activating A/D conversion. Analog channel selector
* Error The smaller the | AVRH - AVRL |, the greater the error would become relatively.
6. D/A Converter Electrical Characteristics
(DAVC = VCC = +3.5 V to +6.0 V, FCH=10 MHz, AVSS = VSS = 0.0 V, TA = -40C to +85C)
Parameter Resolution Linearity error Differential linearity error Output impedance D/A analog power supply current (for one channel)
Symbol
Value Min. -- -- -- -- Typ. -- -- -- 20 0.1 0.1 Max. 8 1.0 0.9 -- --
Unit bit LSB LSB k mA A
Remarks
--
DAVC = VCC = 5.0 V
IDINA IDINS
-- --
At no load and conversion cycle of 5 s During power down
45
MB89640 Series
s EXAMPLES CHARACTERISTICS
(1) "L" Level Output Voltage (P00 to P07, P10 to P17, P20 to P27, P30 to P37, P50 to P57, P60 to P67) (2) "H" Level Output Voltage (P00 to P07, P10 to P17, P20 to P27, P30 to P37)
VOL (V) 0.6 0.5
VOL vs. IOL
VCC = 2.5 V TA = +25C VCC = 3.0 V
VCC-VOH (V) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0
VCC-VOH vs. IOH
TA = +25C VCC = 2.5 V
0.4 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V
VCC = 3.0 V VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0 IOH (mA)
(3) "L" Level Output Voltage (P40 to P47)
(4) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)
VOL vs. IOL VOL (mV) 1500 TA = +25C 1400 1300 VCC = 5 V 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 IOL (mA)
VIN (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2
VIN vs. VCC
TA = +25C
3
4
5
6
7 VCC (V)
46
MB89640 Series
(5) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)
VIN (V) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1 2
VIN vs. VCC
TA = +25C
VIHS VILS
3
4
5
6
7 VCC (V)
VIHS: Threshold when input voltage in hysteresis characteristics is set to "H" level VILS: Threshold when input voltage in hysteresis characteristics is set to "L" level
(6) Power Supply Current (External Clock)
ICC vs. VCC Main clock operation mode (4/FCH instruction)
ICC (mA) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 2 TA = +25C
ICC vs. VCC Main clock operation mode (64/FCH instruction)
XTAL TA = +25C
ICC (mA) XTAL 10 MHz 3 8 MHz 2 6 MHz 4 MHz 1 2 MHz 1 MHz
10 MHz 8 MHz 6 MHz 4 MHz 2 MHz 1 MHz
3
4
5
6 VCC (V)
0
2
3
4
5
6 VCC (V)
(Continued)
47
MB89640 Series
(Continued)
ICS1 vs. VCC Main clock sleep mode (4/FCH instruction)
ICS1 (mA) 4 TA = +25C XTAL 10 MHz 8 MHz 3 6 MHz 2 4 MHz 500 1 2 MHz 1 MHz 0 3 4 5 6 VCC (V) 1,000 6 MHz 4 MHz 2 MHz 1 MHz
ICS2 vs. VCC Main clock sleep mode (64/FCH instruction)
ICS2 (A) 1,500 TA = +25C XTAL 10 MHz 8 MHz
0 2
2
3
4
5
6 VCC (V)
ICS3 (A) 120 100 80 60
ICS3 vs. VCC Subclock mode
TA = +25C Operation
Sleep 40 20 0 2 3 4 5 6 VCC (V) Watch
(7) Pull-up Resistance
RPULL vs. VCC
TA = +25C
RPULL (k) 1000
100
10 1 2 3 4 5 6 VCC (V)
48
MB89640 Series
s INSTRUCTIONS
Execution instructions can be divided into the following four groups: * * * * Transfer Arithmetic operation Branch Others
Table 1 lists symbols used for notation of instructions. Table 1 Symbol dir off ext #vct #d8 #d16 dir: b rel @ A AH AL T TH TL IX Direct address (8 bits) Offset (8 bits) Extended address (16 bits) Vector table number (3 bits) Immediate data (8 bits) Immediate data (16 bits) Bit direct address (8:3 bits) Branch relative address (8 bits) Register indirect (Example: @A, @IX, @EP) Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.) Upper 8 bits of accumulator A (8 bits) Lower 8 bits of accumulator A (8 bits) Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.) Upper 8 bits of temporary accumulator T (8 bits) Lower 8 bits of temporary accumulator T (8 bits) Index register IX (16 bits) Instruction Symbols Meaning
(Continued)
49
MB89640 Series
(Continued)
Symbol EP PC SP PS dr CCR RP Ri x (x) (( x )) Extra pointer EP (16 bits) Program counter PC (16 bits) Stack pointer SP (16 bits) Program status PS (16 bits) Accumulator A or index register IX (16 bits) Condition code register CCR (8 bits) Register bank pointer RP (5 bits) General-purpose register Ri (8 bits, i = 0 to 7) Indicates that the very x is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Indicates that the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) The address indicated by the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Meaning
Columns indicate the following: Mnemonic: ~: #: Operation: TL, TH, AH: Assembler notation of an instruction Number of instructions Number of bytes Operation of an instruction A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following: * "-" indicates no change. * dH is the 8 upper bits of operation description data. * AL and AH must become the contents of AL and AH immediately before the instruction is executed. * 00 becomes 00. N, Z, V, C: OP code: An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag. Code of an instruction. If an instruction is more than one code, it is written according to the following rule: Example: 48 to 4F This indicates 48, 49, ... 4F.
50
MB89640 Series
Table 2 Mnemonic MOV dir,A MOV @IX +off,A MOV ext,A MOV @EP ,A MOV Ri,A MOV A,#d8 MOV A,dir MOV A,@IX +off MOV A,ext MOV A,@A MOV A,@EP MOV A,Ri MOV dir,#d8 MOV @IX +off,#d8 MOV @EP ,#d8 MOV Ri,#d8 MOVW dir,A MOVW @IX +off,A MOVW ext,A MOVW @EP ,A MOVW EP ,A MOVW A,#d16 MOVW A,dir MOVW A,@IX +off MOVW A,ext MOVW A,@A MOVW A,@EP MOVW A,EP MOVW EP ,#d16 MOVW IX,A MOVW A,IX MOVW SP ,A MOVW A,SP MOV @A,T MOVW @A,T MOVW IX,#d16 MOVW A,PS MOVW PS,A MOVW SP ,#d16 SWAP SETB dir: b CLRB dir: b XCH A,T XCHW A,T XCHW A,EP XCHW A,IX XCHW A,SP MOVW A,PC ~ 3 4 4 3 3 2 3 4 4 3 3 3 4 5 4 4 4 5 5 4 2 3 4 5 5 4 4 2 3 2 2 2 2 3 4 3 2 2 3 2 4 4 2 3 3 3 3 2 # 2 2 3 1 1 2 2 2 3 1 1 1 3 3 2 2 2 2 3 1 1 3 2 2 3 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 2 2 1 1 1 1 1 1 Transfer Instructions (48 instructions) Operation (dir) (A) ( (IX) +off ) (A) (ext) (A) ( (EP) ) (A) (Ri) (A) (A) d8 (A) (dir) (A) ( (IX) +off) (A) (ext) (A) ( (A) ) (A) ( (EP) ) (A) (Ri) (dir) d8 ( (IX) +off ) d8 ( (EP) ) d8 (Ri) d8 (dir) (AH),(dir + 1) (AL) ( (IX) +off) (AH), ( (IX) +off + 1) (AL) (ext) (AH), (ext + 1) (AL) ( (EP) ) (AH),( (EP) + 1) (AL) (EP) (A) (A) d16 (AH) (dir), (AL) (dir + 1) (AH) ( (IX) +off), (AL) ( (IX) +off + 1) (AH) (ext), (AL) (ext + 1) (AH) ( (A) ), (AL) ( (A) ) + 1) (AH) ( (EP) ), (AL) ( (EP) + 1) (A) (EP) (EP) d16 (IX) (A) (A) (IX) (SP) (A) (A) (SP) ( (A) ) (T) ( (A) ) (TH),( (A) + 1) (TL) (IX) d16 (A) (PS) (PS) (A) (SP) d16 (AH) (AL) (dir): b 1 (dir): b 0 (AL) (TL) (A) (T) (A) (EP) (A) (IX) (A) (SP) (A) (PC) TL - - - - - AL AL AL AL AL AL AL - - - - - - - - - AL AL AL AL AL AL - - - - - - - - - - - - - - - AL AL - - - - TH - - - - - - - - - - - - - - - - - - - - - AH AH AH AH AH AH - - - - - - - - - - - - - - - - AH - - - - AH - - - - - - - - - - - - - - - - - - - - - dH dH dH dH dH dH dH - - dH - dH - - - dH - - AL - - - dH dH dH dH dH NZVC ---- ---- ---- ---- ---- ++-- ++-- ++-- ++-- ++-- ++-- ++-- ---- ---- ---- ---- ---- ---- ---- ---- ---- ++-- ++-- ++-- ++-- ++-- ++-- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ++++ ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- OP code 45 46 61 47 48 to 4F 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5 D6 D4 D7 E3 E4 C5 C6 C4 93 C7 F3 E7 E2 F2 E1 F1 82 83 E6 70 71 E5 10 A8 to AF A0 to A7 42 43 F7 F6 F5 F0
Notes: * During byte transfer to A, T A is restricted to low bytes. * Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F2MC-8 family)
51
MB89640 Series
Table 3 Mnemonic ADDC A,Ri ADDC A,#d8 ADDC A,dir ADDC A,@IX +off ADDC A,@EP ADDCW A ADDC A SUBC A,Ri SUBC A,#d8 SUBC A,dir SUBC A,@IX +off SUBC A,@EP SUBCW A SUBC A INC Ri INCW EP INCW IX INCW A DEC Ri DECW EP DECW IX DECW A MULU A DIVU A ANDW A ORW A XORW A CMP A CMPW A RORC A ROLC A CMP A,#d8 CMP A,dir CMP A,@EP CMP A,@IX +off CMP A,Ri DAA DAS XOR A XOR A,#d8 XOR A,dir XOR A,@EP XOR A,@IX +off XOR A,Ri AND A AND A,#d8 AND A,dir ~ 3 2 3 4 3 3 2 3 2 3 4 3 3 2 4 3 3 3 4 3 3 3 19 21 3 3 3 2 3 2 2 2 3 3 4 3 2 2 2 2 3 3 4 3 2 2 3 # 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 2 2 1 2 1 1 2 2 Arithmetic Operation Instructions (62 instructions) Operation (A) (A) + (Ri) + C (A) (A) + d8 + C (A) (A) + (dir) + C (A) (A) + ( (IX) +off) + C (A) (A) + ( (EP) ) + C (A) (A) + (T) + C (AL) (AL) + (TL) + C (A) (A) - (Ri) - C (A) (A) - d8 - C (A) (A) - (dir) - C (A) (A) - ( (IX) +off) - C (A) (A) - ( (EP) ) - C (A) (T) - (A) - C (AL) (TL) - (AL) - C (Ri) (Ri) + 1 (EP) (EP) + 1 (IX) (IX) + 1 (A) (A) + 1 (Ri) (Ri) - 1 (EP) (EP) - 1 (IX) (IX) - 1 (A) (A) - 1 (A) (AL) x (TL) (A) (T) / (AL),MOD (T) (A) (A) (T) (A) (A) (T) (A) (A) (T) (TL) - (AL) (T) - (A) CA C A (A) - d8 (A) - (dir) (A) - ( (EP) ) (A) - ( (IX) +off) (A) - (Ri) Decimal adjust for addition Decimal adjust for subtraction (A) (AL) (TL) (A) (AL) d8 (A) (AL) (dir) (A) (AL) ( (EP) ) (A) (AL) ( (IX) +off) (A) (AL) (Ri) (A) (AL) (TL) (A) (AL) d8 (A) (AL) (dir) TL - - - - - - - - - - - - - - - - - - - - - - - dL - - - - - - - - - - - - - - - - - - - - - - - TH - - - - - - - - - - - - - - - - - - - - - - - 00 - - - - - - - - - - - - - - - - - - - - - - - AH - - - - - dH - - - - - - dH - - - - dH - - - dH dH 00 dH dH dH - - - - - - - - - - - - - - - - - - - - NZVC ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++- ---- ---- ++-- +++- ---- ---- ++-- ---- ---- ++R- ++R- ++R- ++++ ++++ ++-+ ++-+ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++R- ++R- ++R- ++R- ++R- ++R- ++R- ++R- ++R- OP code 28 to 2F 24 25 26 27 23 22 38 to 3F 34 35 36 37 33 32 C8 to CF C3 C2 C0 D8 to DF D3 D2 D0 01 11 63 73 53 12 13 03 02 14 15 17 16 18 to 1F 84 94 52 54 55 57 56 58 to 5F 62 64 65
(Continued)
52
MB89640 Series
(Continued)
Mnemonic AND A,@EP AND A,@IX +off AND A,Ri OR A OR A,#d8 OR A,dir OR A,@EP OR A,@IX +off OR A,Ri CMP dir,#d8 CMP @EP ,#d8 CMP @IX +off,#d8 CMP Ri,#d8 INCW SP DECW SP ~ 3 4 3 2 2 3 3 4 3 5 4 5 4 3 3 # 1 2 1 1 2 2 1 2 1 3 2 3 2 1 1 Operation (A) (AL) ( (EP) ) (A) (AL) ( (IX) +off) (A) (AL) (Ri) (A) (AL) (TL) (A) (AL) d8 (A) (AL) (dir) (A) (AL) ( (EP) ) (A) (AL) ( (IX) +off) (A) (AL) (Ri) (dir) - d8 ( (EP) ) - d8 ( (IX) + off) - d8 (Ri) - d8 (SP) (SP) + 1 (SP) (SP) - 1 Table 4 Mnemonic BZ/BEQ rel BNZ/BNE rel BC/BLO rel BNC/BHS rel BN rel BP rel BLT rel BGE rel BBC dir: b,rel BBS dir: b,rel JMP @A JMP ext CALLV #vct CALL ext XCHW A,PC RET RETI ~ 3 3 3 3 3 3 3 3 5 5 2 3 6 6 3 4 6 # 2 2 2 2 2 2 2 2 3 3 1 3 1 3 1 1 1 TL - - - - - - - - - - - - - - - TH - - - - - - - - - - - - - - - AH - - - - - - - - - - - - - - - NZVC ++R- ++R- ++R- ++R- ++R- ++R- ++R- ++R- ++R- ++++ ++++ ++++ ++++ ---- ---- OP code 67 66 68 to 6F 72 74 75 77 76 78 to 7F 95 97 96 98 to 9F C1 D1
Branch Instructions (17 instructions) Operation TL - - - - - - - - - - - - - - - - - TH - - - - - - - - - - - - - - - - - AH - - - - - - - - - - - - - - dH - - NZVC ---- ---- ---- ---- ---- ---- ---- ---- -+-- -+-- ---- ---- ---- ---- ---- ---- Restore OP code FD FC F9 F8 FB FA FF FE B0 to B7 B8 to BF E0 21 E8 to EF 31 F4 20 30
If Z = 1 then PC PC + rel If Z = 0 then PC PC + rel If C = 1 then PC PC + rel If C = 0 then PC PC + rel If N = 1 then PC PC + rel If N = 0 then PC PC + rel If V N = 1 then PC PC + rel If V N = 0 then PC PC + reI If (dir: b) = 0 then PC PC + rel If (dir: b) = 1 then PC PC + rel (PC) (A) (PC) ext Vector call Subroutine call (PC) (A),(A) (PC) + 1 Return from subrountine Return form interrupt Table 5
Other Instructions (9 instructions) Operation TL - - - - - - - - - TH - - - - - - - - - AH - dH - - - - - - - NZVC ---- ---- ---- ---- ---- ---R ---S ---- ---- OP code 40 50 41 51 00 81 91 80 90
Mnemonic PUSHW A POPW A PUSHW IX POPW IX NOP CLRC SETC CLRI SETI
~ 4 4 4 4 1 1 1 1 1
# 1 1 1 1 1 1 1 1 1
53
54
3 RETI
PUSHW A A POPW
L MOV MOVW CLRI A,ext A,PS SETC CLRB BBC INCW DECW MOVW MOVW dir: 1 dir: 1,rel SP SP SP ,A A,SP SETI CLRB BBC INCW DECW JMP MOVW dir: 0 dir: 0,rel A A @A A,PC
H 4 5 6 7 8 9 A B C D E F
0
1
2
0
NOP
SWAP
RET
1 SUBC A A
MULU
DIVU
A XCH XOR AND OR A, T A A
A
PUSHW POPW JMP CALL MOV MOVW CLRC IX IX addr16 addr16 ext,A PS,A
2
ROLC
CMP
ADDC
s INSTRUCTION MAP
A
A
A
MOV MOV CLRB BBC INCW DECW MOVW MOVW @A,T A,@A dir: 2 dir: 2,rel IX IX IX,A A,IX
3 XOR AND OR DAA A,#d8 A,#d8 A,#d8 DAS
RORC
MB89640 Series
A
MOVW MOVW CLRB BBC INCW DECW MOVW MOVW CMPW ADDCW SUBCW XCHW XORW ANDW ORW A A A, T A A A @A,T A,@A dir: 3 dir: 3,rel EP EP EP ,A A,EP A CLRB BBC MOVW MOVW MOVW XCHW dir: 4 dir: 4,rel A,ext ext,A A,#d16 A,PC
4
MOV CMP ADDC SUBC A,#d8 A,#d8 A,#d8 A,#d8
5
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,dir A,dir A,dir A,dir dir,A A,dir A,dir A,dir dir,#d8 dir,#d8 dir: 5 dir: 5,rel A,dir dir,A SP ,#d16 A,SP
MOVW MOVW CLRB BBC MOVW XCHW dir: 6 dir: 6,rel A,@IX +d @IX +d,A IX,#d16 A,IX
6
MOV CMP MOV CMP ADDC SUBC MOV @IX XOR AND OR A,@IX +d A,@IX +d A,@IX +d A,@IX +d +d,A A,@IX +d A,@IX +d A,@IX +d @IX +d,#d8 @IX +d,#d8
7
MOV CMP MOV CMP ADDC SUBC MOV XOR AND OR CLRB BBC MOVW MOVW MOVW XCHW A,@EP A,@EP A,@EP A,@EP @EP ,A A,@EP A,@EP A,@EP @EP,#d8 @EP,#d8 dir: 7 dir: 7,rel A,@EP @EP EP ,A ,#d16 A,EP
8
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNC A,R0 A,R0 A,R0 A,R0 R0,A A,R0 A,R0 A,R0 R0,#d8 R0,#d8 dir: 0 dir: 0,rel R0 R0 #0 rel rel rel rel
9
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BC A,R1 A,R1 A,R1 A,R1 R1,A A,R1 A,R1 A,R1 R1,#d8 R1,#d8 dir: 1 dir: 1,rel R1 R1 #1
A
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BP A,R2 A,R2 A,R2 A,R2 R2,A A,R2 A,R2 A,R2 R2,#d8 R2,#d8 dir: 2 dir: 2,rel R2 R2 #2
B
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BN A,R3 A,R3 A,R3 A,R3 R3,A A,R3 A,R3 A,R3 R3,#d8 R3,#d8 dir: 3 dir: 3,rel R3 R3 #3
C
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNZ A,R4 A,R4 A,R4 A,R4 R4,A A,R4 A,R4 A,R4 R4,#d8 R4,#d8 dir: 4 dir: 4,rel R4 R4 #4 rel rel
D
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BZ A,R5 A,R5 A,R5 A,R5 R5,A A,R5 A,R5 A,R5 R5,#d8 R5,#d8 dir: 5 dir: 5,rel R5 R5 #5
E
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BGE A,R6 A,R6 A,R6 A,R6 R6,A A,R6 A,R6 A,R6 R6,#d8 R6,#d8 dir: 6 dir: 6,rel R6 R6 #6 rel
F
MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BLT A,R7 A,R7 A,R7 A,R7 R7,A A,R7 A,R7 A,R7 R7,#d8 R7,#d8 dir: 7 dir: 7,rel R7 R7 #7 rel
MB89640 Series
s MASK OPTIONS
Part number No. Specifying procedure Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P74, P80 to P83 MB89643 MB89645 MB89646 MB89647 Specify when ordering masking
Selectable per pin (P60 to P67 must be set to without a pull-up resistor when an A/D converter is used. P51 and P50 are must be set to without a pull-up resistor when a D/A converter is used.)
MB89P647
MB89PV640
Set with EPROM programmer Can be set per pin (Only P40 to P47 and P50 to P57 are without a pullup resistor.)
Setting not possible
1
Fixed to without pull-up resistor
2
Power-on reset With power-on reset Without power-on reset Main clock oscillation stabilization time selection (when operating at 10 MHz) Approx. 218/FCH (Approx. 26.2 ms) Approx. 217/FCH (Approx. 13.1 ms) Approx. 214/FCH (Approx. 1.6 ms) Approx. 24/FCH (Approx. 0 ms) FCH: Main clock frequency Reset pin output With reset output Without reset output Selection either single- or dual-clock system Single clock Dual clock
Selectable
Setting possible
Fixed to with power-on reset
3
Selectable
Setting possible
Fixed to approx. 218/FCH (Approx. 26.2 ms)
4
Selectable
Setting possible
Fixed to with reset output Fixed to dualclock system
5
Selectable
Setting possible
s ORDERING INFORMATION
Part number MB89647PFM MB89646PFM MB89645PFM MB89643PFM MB89P647PFM MB89647PF MB89646PF MB89645PF MB89643PF MB89P647PF MB89PV640CF Package 80-pin Plastic QFP (FPT-80P-M11) Remarks
80-pin Plastic QFP (FPT-80P-M06) 80-pin Ceramic MQFP (MQP-80C-P01)
55
MB89640 Series
s PACKAGE DIMENSIONS
80-pin Plastic QFP (FPT-80P-M11)
16.000.20(.630.008)SQ
60
14.000.10(.551.004)SQ
41
1.50 -0.10 +.008 .059 -.004
+0.20
61
40
12.35 15.00 (.486) (.591) REF NOM
1 PIN INDEX
80 21
LEAD No.
1 20
"A" 0.300.10 (.012.004) 0.13(.005)
M
Details of "A" part 0.127 .005
+0.05 -0.02 +.002 -.001
0.65(.0256)TYP
0.100.10 (STAND OFF) (.004.004)
0.10(.004)
0
10
0.500.20 (.020.008)
C
1994 FUJITSU LIMITED F80016S-1C-2
Dimensions in mm (inches)
56
MB89640 Series
80-pin Plastic QFP (FPT-80P-M06)
23.900.40(.941.016)
64 65
20.000.20(.787.008)
41 40
3.35(.132)MAX 0.05(.002)MIN (STAND OFF)
14.000.20 (.551.008)
INDEX
80 25
17.900.40 (.705.016)
12.00(.472) REF
16.300.40 (.642.016)
"A" LEAD No.
1 24
0.80(.0315)TYP
0.350.10 (.014.004)
0.16(.006)
M
0.150.05(.006.002)
Details of "A" part 0.25(.010) "B" 0.10(.004) 18.40(.724)REF 22.300.40(.878.016) 0.30(.012) 0.18(.007)MAX 0.58(.023)MAX
Details of "B" part
0 10 0.800.20 (.031.008)
C
1994 FUJITSU LIMITED F80010S-3C-2
Dimensions in mm (inches)
57
MB89640 Series
80-pin Ceramic MQFP (MQP-80C-P01)
18.70(.736)TYP 12.00(.472)TYP 16.300.33 (.642.013) 15.580.20 (.613.008) 1.50(.059)TYP 1.00(.040)TYP 4.50(.177) TYP 1.20 -0.20 +.016 .047 -.008
+0.40
INDEX AREA
0.800.25 (.0315.010) 0.800.25 (.0315.010)
1.270.13 (.050.005) 22.300.33 (.878.013) 24.70(.972) TYP 0.30(.012) TYP 18.120.20 12.02(.473) (.713.008) TYP 10.16(.400) 14.22(.560) TYP TYP
INDEX AREA 18.40(.724) REF
INDEX 6.00(.236) TYP 0.30(.012)TYP 7.62(.300)TYP 9.48(.373)TYP 11.68(.460)TYP 0.400.10 (.016.004) 1.50(.059) TYP 1.00(.040) TYP
1.270.13 (.050.005)
0.400.10 (.016.004)
1.20 -0.20 +.016 .047 -.008
+0.40
0.150.05 8.70(.343) (.006.002) MAX
C
1994 FUJITSU LIMITED M80001SC-4-2
Dimensions in mm (inches)
58
MB89640 Series
FUJITSU LIMITED
For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329 http://www.fujitsu.co.jp/ North and South America FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179 Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST) Tel: +1-800-866-8608 Fax: +1-408-922-9179 http://www.fujitsumicro.com/ Europe FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://www.fujitsu-fme.com/ Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220 http://www.fmap.com.sg/ Korea FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams. The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED. FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.
F0005 (c) FUJITSU LIMITED Printed in Japan
59


▲Up To Search▲   

 
Price & Availability of MB89646PFM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X